
Localization and spreading of contact discontinuity layers
in simulations of compressible dissipationless flows

N.J. Zabusky *, S. Gupta, Y. Gulak

Laboratory for Visiometrics and Modeling, Department of Mechanical and Aerospace Engineering, and Center for Advanced Information

Processing (CAIP) Center, Rutgers University, Piscataway, NJ 08855-8058, USA

Received 4 September 2001; received in revised form 23 October 2002; accepted 29 October 2002

Abstract

We introduce a systematic approach to examine the localization and width of contact discontinuity layers (CDLs) in

simulations of the compressible Euler equations. We study the Piecewise Parabolic Method (PPM) [4] and WENO [3],

by simulating a single diffusing or shock-accelerated CDL in 1D and 2D (inclined planar interface). Here the density

jump g is greater or less than unity (i.e., fast/slow {f/s} and slow/fast {s/f}, respectively). We advocate a point-wise
algorithm for width extraction when the flows are nearly-discontinuous. We examine the CDL localization under mesh

refinement and the CDL width spreading at long times. We find that, PPM has an asymmetrically developing CDL

width. PPM introduces an artificial steepening for the f/s case and a spreading width CDL for s=f / t1=3. The median
point of the interface depends on the order of accuracy r. For PPM, r ¼ 2, it is located at a density, ðq1 þ 2q2Þ=3,
consistent with analysis in [14]. For WENO, r ¼ 3, (5th order accurate in smooth monotone regions) the width of the
CDL increases as t1=4, although there is a slight dependence on translation speed of the CDL. These observations are
essential for establishing the validity of simulations of accelerated flows of high-gradient stratified and compressible

media (Rayleigh–Taylor and Richtmyer–Meshkov environments), particularly for reshock configurations in 2D and

3D.
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1. Introduction

The long time evolution of interfacial domains between media of different density (or other intrinsic

properties) is of fundamental importance in many fluid fields. In particular our interest is the turbulent

mixing in the accelerated inhomogeneous flow or ‘‘aif’’ environment [15].
At present the foci of application for this environment (also called Richtmyer–Meshkov impulsive or

Rayleigh–Taylor environment) are to inertial confinement (e.g., laser) fusion [9], supersonic combustion [5]
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or supernova and planetary nebula astrophysics [10]. In many cases the acceleration is produced by shock

or blast waves. Simulations are usually done with finite volume or finite difference codes like PPM [4] or

WENO [3], which are written for non-dissipative media. Many studies have examined order of accuracy

and convergence of these methods (see [1] and references therein). However, they usually focus on prop-

erties of shocks and frequently omit a careful study of the localization and spreading of high-gradient

density-stratified domains or contact discontinuity layers (CDL), as we call them. In fact, these are the

essential locations for the turbulence which emerges at shear or vorticity bearing layers in shocked flows, a

frequent occurrence at late time in these investigations.
Also there is the issue of the well posedness of the original non-dissipative formulation of the problem.

Many have shown (e.g. [2,11]) that the ill-posed nature of the shock-interface problem manifests in the

more rapid roll-up of the interface as one refines the mesh. This arises because the same circulation per unit

length is being deposited by the shock on the interface while the roll-up time (or inverse vorticity) decreases

with decreasing mesh size. Thus the interface becomes structured more quickly and develops very high

curvature regions in a finite time. (Note an Atwood number of unity may be an exception [2].) Numerous

ad hoc techniques are employed by investigators to modify their subjective feeling of an inappropriate

evolution of the density discontinuities. These modifiers include contact ‘‘steepeners’’, artificial compression
methods [3], dealiasing filters, and flux limiters. These modifiers operate in regions where the evolving

circulation may be large.

Contact surfaces arise from the initial arrangement of matter in regions of different density or c, the ratio
of specific heats, (e.g., bubbles or clouds of materials in an ambient environment) or thru the formation of

‘‘triple’’ points where shocks of sufficient Mach number cross each other at finite angles. The spreading of

regions of large gradients is controlled by diffusion processes – either physical or numerical. However, in

two or higher dimensions, when vorticity (in thin layers) is associated with the high gradient regions the

diffusion process is complicated by advective (mixing) effects and the region has a turbulent or ‘‘complex’’
behavior. This is particularly challenging if there are repeated shock interactions or re-accelerations of the

CDL [8].

In this paper, we discuss the quantification of the localization and spreading of CDLs from numerical

processes. We do this in one dimension and two dimensions for two codes, which are generic and popular at

present: PPM (obtained from the Virginia Hydrodynamics group and based on [4]) and WENO [3].

1.1. Motivation

This work has its roots in the recent study by Samtaney and Zabusky [12] of the visualization and

quantification of 2D simulations of a shock interacting with a planar inclined contact discontinuity as

Fig. 1. Initial configuration of a shock of Mach number M moving to the right in ambient density q1 and a planar inclined contact
discontinuity (CD), followed by a region of density q2.
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shown in Fig. 1. They quantified high-gradient regions (shocks and contact discontinuities) by using a

variant of an edge detection technique (corresponding to the zero crossing of the Laplacian of the density

field) to obtain a contour. Samtaney et al. [12] have generalized this technique to 3D for the extraction of

‘‘shocklets’’.

To establish the validity of the method, Samtaney and Zabusky did a convergence study for the 1D

problem of a shock (M ¼ 3:0) interacting with a density discontinuity ðq2=q1 ¼ 3:0Þ, which allows a simple
exact solution. However, they found that the location of the contact discontinuity at ð1=2Þðq1 þ q2Þ as
shown in Curve C of Fig. 2 (their Fig. 12.9) did not converge to the exact analytical location, when the
contact discontinuity was extracted with the zero crossing of the second central difference of density, d2r. In
fact, as shown, the error under mesh refinement obeys a power law variation in mesh size.

Furthermore, in a recent study, for a weak shock ðM ¼ 1:095Þ interacting with a heavy gas ðSF6Þ cyl-
inder, Gupta [6] observes an asymmetry in steepening of the upstream (f/s) and downstream (s/f) interfaces

after passage of shock when using PPM. Fig. 3(a) shows a horizontal slice of the normalized density

gradient near the axis at six different times after the shock has passed the cylinder. The increase of both

gradients is caused by strong nearby vortex domains that arise from the roll-up of the deposited primary

circulation. We see the upstream and downstream interfaces evolve asymmetrically.
The downstream (s/f) interface (marked by Dm, where m is an integer) increases more rapidly since it is

nearer to the vortex and the magnitude saturates because of numerical diffusion. The upstream (f/s) in-

terface (marked by Um) is further from the vortex domain and continues to steepen and then saturates. This
asymmetry slightly affects the evolution of global circulation, as shown in Fig. 3(b). The steady increase in

circulation after primary vorticity deposition is due to ‘‘secondary’’ baroclinic generation arising from the

acceleration produced by the strong vortex domains. This process is augmented by a density-gradient in-

tensification and the asymmetric behavior of the f/s (upstream) and s/f (downstream) interface will affect the

evolution of negative and positive circulations, respectively. This vortex-accelerated baroclinic deposition
will be discussed more completely in a future publication.

Fig. 2. Convergence study using the difference in the numerical and analytical locations of high gradient regions vs mesh size h. Here,

an M ¼ 3:0 shock interacts with a density discontinuity (CD, q2=q1 ¼ 3:0) and yields a moving CD (C), upstream reflected shock (R),
and downstream transmitted shock (T) (see [13]). The numerical location point for each discontinuity (T, R, and C) is at the zero

crossing of the second central difference of the density.
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2. Continuum limits and linear differential approximation technique

To explain the non-convergent phenomenon observed by Samtaney and Zabusky [12], we use the elegant

error analysis of Vorozhtsov and Yanenko [14], which employs the concept of continuum limits of discrete

systems, or ‘‘Differential Approximations’’ introduced by Shokin [13]. First, consider the 1D Riemann

problem for the Euler system

oU
ot

þ ouðUÞ
ox

¼ 0: ð1Þ

Here U ¼ ðq; qu; qEÞt and uðUÞ ¼ ðqu; p þ qu2; uðp þ qEÞt. Here the total specific energy is E ¼ eðp; qÞþ
u2=2, and the internal energy e is a prescribed equation of state. In our work we use,

Fig. 3. Evolving normalized density gradient, (rq=rqj0;max) near the x-axis (along a horizontal slice at j ¼ 5) after the passage of a
M¼ 1.095 shock interacting with a cylinder of SF6 in air. The two nearby peaks in gradient profile represent the upstream and

downstream interface and are designated by ‘‘Um’’ and ‘‘Dm’’, respectively. Here m refers to the six times shown upper left. Fig. (b)
shows the global positive (Cþ), negative (C�) and net (Cnet) circulations as a function of time (tM) normalized by Mach number.
Circulations are plotted for two initial transition layer widths. The evolution of circulation during the secondary baroclinic phase (III)

is aided by the gradient intensification.
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e ¼ p=qðc � 1Þ ¼ RT=ðc � 1Þ:
To examine the spreading of a CD we examine a simple problem given by the constant initial data

uðx; 0Þ ¼ u0; pðx; 0Þ ¼ p0; qðx; 0Þ ¼ q1; x < x0;
q2; x > x0:

�
ð2Þ

Thus, we reduce Eqs. (1) and (2) to the solution of a linear equation

oq
ot

þ u0
oq
ox

¼ 0: ð3Þ

Here dx=dt ¼ u0 is the characteristic along which the contact discontinuity propagates. The numerical
algorithm and code approximates this ð1þ 1Þ partial differential equation with finite-difference methods,
which can have an rth order of spatial accuracy. That is, the continuum limit (or differential ap-

proximation (DA)) obtained from a Taylor series expansion of the discretized version of Eq. (3) has the

form

oq
ot

þ u0
oq
ox

¼ ð�1Þrþ1lrþ1
orþ1q
oxrþ1

; ð4Þ

where only the leading term in a infinite series has been kept on the right-hand side, lrþ1 is a constant

dependent on h, Dt, u0, and p0, where h and tD are the spatial grid size and time step of the numerical
algorithm, respectively. Note, an equation identical to this one, namely first order in time and ðr þ 1Þ
order in space, was presented by Harten [7] in his discussion of the spreading of a discontinuity in the
numerical solutions of a linear advection equation obtained by an rth order difference scheme. For first-

and second-order methods, r ¼ 1 and r ¼ 2, the similarity solutions (given in [14]) corresponding to
initial conditions (2) are, respectively

qðx; tÞ ¼ 0:5ðq1 þ q2Þ þ 0:5ðq2 � q1ÞerfðnÞ; ð5Þ

where nðx; tÞ ¼ ðx� x0 � u0tÞ=ð2l2tÞ
1=2
and

qðx; tÞ ¼ ð2q2 þ q1Þ=3þ ðq2 � q1Þ
Z n

0

Aiðn0Þdn0; ð6Þ

Table 1

Density profiles for different runs

Figs. Evolution g or g
 Vel (u0 or M) nD a C=r h
1000

5(a) F 0.14 1.5 1 N/A PPM/2 10,2,0.5

5(b) F 0.14 1.5 2 0 PPM/2 10,2,0.5

5(c) F 0.14 1.5 2 30 PPM/2 10,2,0.5

7(a) F 7.0 1.5 1 N/A PPM/2 10,2,0.5

7(b) F 7.0 1.5 2 0 PPM/2 10,2,0.5

6(a) S 0.142 1.5 1 N/A PPM/2 10,2,0.5

6(b) S 0.142 1.5 2 0 PPM/2 10,2,0.5

6(c) S 0.142 1.5 2 10 PPM/2 10,2,0.5

8(a) S 6.83 1.5 1 N/A PPM/2 10,2,0.5

8(b) S 6.83 1.5 2 0 PPM/2 10,2,0.5

10(a) S 0.142 1.5 1 N/A WENO/3 10,2,0.667

10(b) S 6.83 1.5 1 N/A WENO/3 10,2,0.667
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where nðx; tÞ ¼ ðx� x0 � u0tÞ=ð3l3tÞ
1=3
. Here

erfðnÞ ¼ 2ffiffiffi
p

p
Z n

0

e�s2 ds

is the error function and AiðsÞ is the oscillatory Airy function whose properties can be found in [17]. Al-
though this analysis is valid only for linear equations we find below, excellent agreement with PPM ðr ¼ 2Þ
and WENO ðr ¼ 3Þ non-linear codes. The WENO scheme, based on the rth-order accurate ENO scheme, is
ðr þ 1Þth-order accurate in smooth monotone regions, although this is still not as good as the optimal order
ð2r � 1Þ [16].

Fig. 4. Extraction procedure for the width of a CDL involves taking the difference of locations between maximum and minimum

second central difference (d2q). The width of contact discontinuity remains almost constant in f/s case (F, 1D). Solid line with squares is
dq and dashed line with black circles is d2q (a) t ¼ 0:0, (b) t ¼ 0:27, (c) t ¼ 0:6.
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3. Localization and spreading of a contact discontinuity

3.1. Evolution and extraction of a CDL

We examine and quantify the evolution of a CD layer (CDL), an initial density jump of finite small width

OðhÞ in 1D and 2D. We examine two cases, designated as (F) and (S). In the former, the CDL evolves freely
while translating with u0 and in the later it is at rest and struck by a shock of Mach number M, entering
from the left. The CDL may be an increase or decrease in density, i.e. ratio g > 1:0 and <1.0, {‘‘fast/slow’’
(f/s) or ‘‘slow/fast’’ (s/f)}, respectively. In this study, we use q1 ¼ 1 and q2 ¼ 0:14 for the (s/f) case and
q1 ¼ 1 and q2 ¼ 7:0 for the f/s case. (For the S case, the density ratio, g
 is that after the shock has passed.)

The 2D runs are for the clockwise-inclined planar interfaces at a degrees to the vertical, as shown in Fig. 1.
For a ¼ 0 in 2D, we examine how a 2D code computes an initially 1D initial condition. For 2D runs we,
examine only the horizontal slice, which is located midway between the two horizontal boundaries.

The simulations are done with PPM (r ¼ 2) and WENO (r ¼ 3). WENO uses a third-order accurate

Runge–Kutta method [3]. Table 1 summarizes the runs.

Fig. 5. Density profile at t ¼ 0:3 for (F), a diffusing contact with initial speed u0 ¼ 1:5 and g ¼ 0:14 and varying resolutions. Solid line
with circles is the highest resolution 0.0005 (- - -) and (-�-�-) are 0.002 and 0.01, respectively. (a) 1D, (b) 2D, a ¼ 0, (c) 2D, a ¼ 30�.
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Fig. 6. Density profiles at t ¼ 0:3 for a Mach 1.5 shock–contact interaction (S) and g ¼ 0:14 and varying resolutions. The solid line
with open circles is the highest resolution 0.0005 and (- - -) and (-�-�-) are 0.002 and 0.01, respectively. (a) q, 1D (b) q, 2D, a ¼ 0, (c) q,
2D, a ¼ 10, (d) q and dq, 1D.
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First, we examine the graphs of density to localize of the point of ‘‘transition’’ of the CDL under mesh

refinement. Next we examine the spreading of the CDL. The width of the CDL is defined as the interval

between extrema of second central difference of density. (This width is almost half the distance between

positions where dq > dqthresh.) We use an accurate point-wise algorithm to extract this width, as described in
Appendix A. For example, Fig. 4 shows the first and second central difference of the density function at

t ¼ 0, 0.27 and 0.6 for a 1D f/s (g ¼ 7:0) case. Note at t ¼ 0, the interval between extrema of the 2nd central
difference is h.

3.2. Localization of a CDL with PPM and WENO under mesh refinement

We examine how q evolves with varying resolutions – a range of 20, from 0.01 to 0.0005. Figs. 5(a)–(c)
(F, u0 ¼ 1:5, 1D, 2D (a ¼ 0 and a ¼ 30), g ¼ 0:14) show that as the resolution increases all the curves
intersect nearly at the same location, q ¼ 0:44. This is very good agreement with Eq. (6) for a second-order
scheme which predicts the intersection point as 0.43 for densities used. We recommend this intersection

point as a valid approximation in 1D to the true location of the contact discontinuity. This point is also

close to the location where d2q ¼ 0. Similarly, for case (S) (M ¼ 1:5 and g ¼ 0:14) , the results in Figs. 6(a)
and (b) in 1D and 2D (a ¼ 0) are 0.625 and 0.63, respectively, in close agreement to the analytical value,
0.63 (where post-shock densities are used). In Fig. 6(c) for finite angle (a ¼ 10), we see moderately good
agreement, 0.665, with the predicted value for the two highest resolutions.

Fig. 6(d), for the S, M ¼ 1:5 case in 1D shows an asymmetry in dq, which is a manifestation of the
property of the Airy function (as discussed in detail in [14], Sec. 4.1.2). The numerical algorithm has

suppressed the oscillations associated with the Airy function and this does not seem to affect the conver-

gence of the CDL localization under mesh refinement.

Fig. 7. Density profile at t ¼ 0:3 for a diffusing contact (F) with initial speed u0 ¼ 1:5 and g ¼ 7:0 and varying resolutions. Solid line
with circles is the highest resolution 0.0005 and (- - -) and (-�-�-) are 0.002 and 0.01, respectively. (a) 1D, (b) 2D, a ¼ 0.
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Figs. 7(a) and (b) F, M ¼ 1:5, g ¼ 7:0 case shows density profiles. The different resolutions intersect at
q ¼ 5:75, reasonably close to the analytical value of q ¼ 5. Note in Figs. 4(b) and (c) (for this case) that
PPM maintains a width of one or two intervals for the CDL, as we will discuss below in Fig. 13. This is

evident from the steeper density profiles in this case as compared to the s/f case in Fig. 5.

Figs. 8(a) and (b) for the S, M ¼ 1:5, g ¼ 7:0 case shows similar good results. The intersection point for
the curves is 13.0 and 13.5, respectively, whereas the analytical value for the after shock densities is 13.27. In
Fig. 8(c), the width of the CDL is always one or two mesh intervals and the asymmetry is barely noticeable.

Note, Balsara and Shu [3] simulated four translating profiles with PPM with a steepener operating and also

noted an asymmetry for one triangular shaped profile (their Fig. 1(d), left) of four studied. However, they

did not comment on this asymmetry since their study was not focused on evolving CDLs.

Fig. 8. Density profiles at t ¼ 0:3 for a Mach 1.5 shock–contact discontinuity (S) with g ¼ 7:0 and varying resolutions. The solid line
with open circles is the highest resolution 0.0005 and (- - -) and (-�-�-) are 0.002 and 0.01, respectively. (a) q, 1D, (b) q, 2D, a ¼ 0, (c) q
and dq, 1D.
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Fig. 9. Density profiles at t ¼ 0:3 for a M ¼ 1:5 shock–contact discontinuity (S) and varying resolutions. The PPM scheme is used

without the van Leer limiter. The solid line with open circles is the highest resolution 0.0005 and (- - -) and (-�-�-) are 0.002 and 0.01,
respectively. (a) q, s/f (g ¼ 0:14), (b) q, f/s case (g ¼ 7:0).

Fig. 10. Density profiles at t ¼ 0:3 for shock–contact interaction (S) withM ¼ 1:5 using the WENO ðr ¼ 3Þ code. Solid line with circles
represents highest resolution 0.000667 and (- - -) and (-�-�-) are 0.002 and 0.01, respectively. (a) q, s/f (g ¼ 0:14), (b) q, f/s (g ¼ 7:0).
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Fig. 11. Growth of width of a CDL for (F) and u0 ¼ 1:5 for g ¼ 0:14. The curve is plotted for a resolution of 0.002. (a) 1D, (b) 2D,
a ¼ 0.

Fig. 12. Growth of width of a CDL for (S) and g ¼ 0:14, 1D case. U 

0Dt is constant where U



0 is the velocity of the CDL after the shock

has passed. (a) M ¼ 1:2, (b) M ¼ 1:5, (c) M ¼ 2:0, (d) M¼ 2.5.
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The PPM code used contains no explicit steepener. However, the van Leer limiter (Eq. (1.8) in [4]) that is

used to obtain monotonicity leads to larger gradients. To examine this limiter effect, we did 1D (S) at

M ¼ 1:5 without this limiter for s/f (g ¼ 0:14) and f/s (g ¼ 7:0) ratios as shown in shown in Figs. 9(a) and
(b), respectively. We observe a loss of monotonicity near the contact discontinuity only in the latter. The

density profile widths are the same as with a limiter, namely the f/s case is steeper than s/f case.

Figs. 10(a) and (b) for WENO ðr ¼ 3Þ (S), M ¼ 1:5, g ¼ 0:14 and g ¼ 7:0, respectively shows conver-
gence to the midpoint. The points of intersection are 0.85 (s/f) and 10.0 (f/s), respectively.

3.3. Spreading of a CDL with PPM and WENO under mesh refinement

The width of the CDL is obtained automatically from 1D data sets by a point-wise algorithm described

in Appendix A. The algorithm extracts density jumps by searching for nearby opposite-signed values of
extrema of the second central difference of density and then eliminates shocks. The variation in CDL width

Fig. 13. Growth of width of a CDL for (S). (a)M ¼ 1:5; g ¼ 0:14, 2D, a ¼ 0. (b)M ¼ 1:2; g ¼ 0:14 2D, a ¼ 10. (c)M ¼ 1:5; g ¼ 7:0,
1D. The curves are plotted for a resolution of 0.002.
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is plotted in Figs. 11(a) and (b). for F, with g ¼ 0:14 in 1D and corresponds to Figs. 5(a) and (b). The width
begins at 3 mesh intervals and rises to a maximum of seven intervals. The power law slope is 0.30 and 0.28,

respectively, close to the theoretical value of 0.33. These results were obtained with TECPLOT using a least

squares fit to the function w ¼ btp with 35–40 data points in the interval. Note the first curve is not
monotonic (a process seen later) because of the sensitivity of the extraction scheme.

In Figs. 12(a)–(d) for S and corresponding to Fig. 6(a) for s/f we see a more oscillatory behavior in width
growth. This phenomenon is associated with the interaction of the PPM simulation code and the point-wise

extraction code. In essence, there is an oscillation over one grid interval before a steady plateau is reached.

For Mach numbers, 1.2, 1.5, 2.0 and 2.5, the exponents are ‘‘p’’ are 0.25, 0.31, 0.34 and 0.33, respectively.

(Note these results were obtained with identical CFL numbers, i.e., for increasing shock speed the time step

was decreased.) At present we are unable to explain the slight increase of exponent with M.

In Fig. 13(a) corresponding to Fig. 6(b) ðS; g ¼ 0:14Þ the exponent is 0.3. In Fig. 13(b), corresponding to
Fig. 6(d) ðS; g ¼ 0:14Þ, the exponent is 0.26, a result of the complexity discussed above.

Fig. 14. Growth of width of a CDL for (S) and g ¼ 0:14, 1D using WENO ðr ¼ 3Þ. (a) M¼ 1.2, (b) M¼ 1.5, (c) M¼ 2.0.
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In Fig. 13(c), corresponding to Fig. 7(a), ðF; g ¼ 7:0Þ, the width oscillates between one or two intervals.
We also find this phenomenon of narrow oscillations over the smallest intervals for (S) and g > 1.
Figs. 14(a)–(c) (S; g ¼ 0:14, 1D) shows the growthof theCDLat varyingMachnumber forWENO ðr ¼ 3Þ

code. The exponent ranges from 0.18 to 0.24, reasonably close to analytical result of 0.25. Fig. 15(a) and (b)
(S; g ¼ 7:0, 1D) shows thatWENO third-order code does not show the oscillatory behavior ofwidth function
as does PPM (see Fig. 13(c)) for f/s case. The value of exponent in this case ranges from 0.19 to 0.25. Table

2 summarizes the spreading rates for different runs. In both PPM andWENO ðr ¼ 3Þ, exponents are smaller
for lower Mach numbers and converge towards the analytical value at as we increase the Mach number.

Fig. 15. Growth of width of a CDL for (S), g ¼ 7:0, 1D using WENO ðr ¼ 3Þ. (a) M ¼ 1:2, (b) Mach 2.0.

Table 2

Spreading rates for different runs

Figs. Evolution g or g
 Vel (U0 or M) nD a C=r Exponent (p)

11(a) F 0.14 1.5 1 N/A PPM/2 0.2996

11(b) F 0.14 1.5 2 0 PPM/2 0.282

13(c) F 7.0 1.5 1 N/A PPM/2 Oscillating

12(a) S 0.142 1.2 1 N/A PPM/2 0.245

12(b) S 0.142 1.5 1 N/A PPM/2 0.31

12(c) S 0.142 2.0 1 N/A PPM/2 0.337

12(d) S 0.142 2.5 1 N/A PPM/2 0.327

13(a) S 0.142 1.5 2 0 PPM/2 0.297

13(b) S 0.142 1.2 2 10 PPM/2 0.26

14(a) S 0.142 1.2 1 N/A WENO/3 0.18

14(b) S 0.142 1.5 1 N/A WENO/3 0.22

14(c) S 0.142 2.0 1 N/A WENO/3 0.25

15(a) S 6.83 1.2 1 N/A WENO/3 0.19

15(b) S 6.83 2.0 1 N/A WENO/3 0.25
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4. Discussion

We have presented a systematic approach to quantifying the evolution of a 1D CDL. We have used the

second central difference approximation to the second derivative for extraction. We have applied these to

inviscid schemes, PPM ðr ¼ 2Þ and WENO ðr ¼ 3Þ, for simulations of ideal contact discontinuities that are
freely diffusing (case F) or diffusing after shock passage (S). For these codes, our results on the localization

of the CDL median point agree very well with analytical results based on a linear approximation to the

truncation error in 1D [13] (when the CDL does not bear vorticity). For CDL spreading: a linearly
translating interface, which is freely diffusing (F and g < 1) the temporal exponent of the extracted ‘‘width’’
varies from 0.25 to 0.33 for PPM (close to the analytical result of 0.33). However, for PPM we have found

asymmetries in spreading in f/s case. That is, for g < 1, the CDL spreads as a power law whereas for g > 1,
the width oscillates between one or two grid intervals. The WENO ðr ¼ 3Þ code does not have this
asymmetry. The observed gradient intensification (artificial compression) in the PPM f/s case is still not

understood.

This asymmetry phenomenon in PPM or other codes that employ an ad hoc ‘‘artificial compression’’

procedure will prove troublesome in realistic 2D and 3D problems where ‘‘re-acceleration’’ or ‘‘re-shock’’
phenomena occur at later times, in particular the important ‘‘mixing’’ epochs when the vorticity bearing

interface (which are CD layers) are becoming turbulent.

Acknowledgements

This work has been supported by Rutgers University and in part by the Department of Energy (Grant

DE-FG02-98ER25364) under Dr. Daniel Hitchcock. We acknowledge the use of the PPM code from the
numerical astrophysics group at the University of Virginia (http://wonka.physics.ncsu.edu/pub/VH-1/VH-

1_guide.html). We acknowledge the use of WENO codes from Dr. R. Samtaney of Princeton Plasma

Physics Laboratory. He assisted us in their use and made valuable comments on an early manuscript. We

acknowledge correspondence with E. Vorozhtzov on the historical context of diffusive spreading of dis-

continuous interfaces.

Appendix A. Extraction procedure for the width of a CDL

To obtain a measure for the width of the CDL automatically, we use a variation of the ‘‘edge detection’’
technique as described in [11]. We use the second central difference approximation to qxx,

d2qi ¼ qiþ1 � 2qi þ qiþ1. (For the 2D runs, we take a single slice, midway between the horizontal bound-

aries). We search the 1D domain for the largest nearby max and min of d2qi and the interval between them

is defined to be the width. For cases where shocks are present, we examine this interval after the shock has

passed the interface and use the pressure jump and r � u as cost functions for excluding shocks and other
noise. (Note, the pressure jump across the interval (normalized by the mean pressure) is less than a

threshold dpthresh and jr � uj < jr � uthreshj, where dpthresh and r � uthresh are 0.1 and 0.025, respectively, of the
value across the single large shock in our problem.)
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